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This document contains the Tables and Figures associated with the Methods section.  

Supplementary Table 1. Knowledge and Control implemented in CAMEO. 

Knowledge and Control CAMEO 

Knowledge: Past experiments both physical and 

computational 

Automated access to experimental and density functional 

theory materials structure databases. Includes Inorganic 

Crystal Structure Database and AFLOW.org. 

Knowledge: Materials physics theory Phase mapping and structure theory including Gibbs phase 

rule via constraint programming 

Knowledge: Materials synthesis and processing NA 

Knowledge: Measurement science X-ray diffraction simulation capability using structure data as 

input 

Control: Synthesis control NA 

Control: Characterization X-ray diffraction: high-throughput X-ray diffraction system1 

at the Stanford Synchrotron Radiation Lightsource (SSRL) 

and Bruker D-8* 

Control: Communication GUI for user interface; Interface to databases to store and 

share knowledge with experts and other AIs; Network 

interface for instrument control 

 

Supplementary Table 2. List of physical constraints in [(32)] method and associated encoding methods. 

Physical Constraint Encoding Method 

Phase regions are cohesive and phase boundaries are 

continuous 

1. If two or more set of vertices share the same phase 

region label but are not connected by vertex neighbors, 

differing labels are assigned to the disconnected sets.  

2. The Markov Random Field smoothness constraint 

Materials of similar synthesis and processing 

parameters have similar properties 

1. Markov Random Field smoothness constraint 

2. Harmonic Energy Minimization for label 

propagation 

Abundances of phases is non-negative Karush–Kuhn–Tucker conditions2 

X-ray diffraction intensity is non-negative Karush–Kuhn–Tucker conditions2 

Soft Gibbs Phase Rule - Upper bound limit on number 

of constituent phases 

Upper limit on number of endmember limits allowed in 

each phase region 

Identified endmembers should be physically realizable Volume constraint on identified / predicted 

endmembers 
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Supplementary Figure 1. Benchmarking performance. a) Main figure: Phase mapping performance demonstrating that CAMEO 
provides a significant advantage over the three alternatives: random sampling, sequential sampling, and measuring 10 % of the 
samples well distributed over the composition space. Subset figure: Material optimization performance. The benchmark materials 
optimization challenge is highly simple with a very prominent, broad peak – a challenge that Bayesian optimization schemes 
excel at. Nevertheless, CAMEO provides improved results over the next best alternative, GP-UCB. Of note is CAMEO’s initial 
lag in performance due to its initial goal of maximizing phase mapping performance. Once phase mapping performance 

converges, it then switches to materials optimization and shows faster performance than GP-UCB. b) The number of clusters for 
the benchmark dataset was initialized to 5 and while this number on average increased during CAMEO’s phase mapping, it 
converged to 5. Demonstrating that improved performance was not due to increased complexity defined by a larger number of 
clusters. 

 

Supplementary Figure 2. Color coded phase map prior derived from AFLOW.org computed tie-lines (black lines) for the 

benchmark Fe-Ga-Pd material system. 

 

Random 

Sequence  

10 % 

Benchmarked Phase Mapping and Materials Optimization 

Iteration Number 

0.1 % 

1 % 

10 % 

100 % 

CAMEO 

CAMEO 

GP-UCB 

Random 

20 15 10 5 25 

Iteration Number 

CAMEO 

a b 

P
h

as
e 

M
ap

p
in

g 
P

er
fo

rm
an

ce
 [

%
] 

N
u

m
b

er
 o

f 
C

lu
st

er
s 

 

Fe Fe
40

Ga
60

 

Fe
40

Pd
60

 

Fe3Ga 



4 
 

 
Supplementary Figure 3. Example Ge-Sb-Te optical data used for phase mapping prior. 

 
Supplementary Figure 4. a) For the 10 % material selection out of the 278 materials in the composition spread, the selected 28 
materials are indicated with black filled circles. b) The order of materials measured during sequential measurement.  
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Supplementary Figure 5. Modifications made to the Fe-Ga-Pd remnant magnetization as measured as scanning SQUID voltage 
signal. a) Red circles indicate the samples with saturated voltage of 10 V, b) Modified voltage by enhancing main voltage peak at 

𝜇 = 𝐹𝑒78𝐺𝑎16𝑃𝑑6 and the maximum indicated with a red circle. 

 

Supplementary Figure 6. Phase-change temperature mapping of the combinatorial Ge-Sb-Te spread. 
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Supplementary Figure 7. Structural evolution FCC-Ge-Sb-Te (GST) structure (top) to the Sb-Te structure (bottom) across the line 

of composition marked in the phase diagram on the right. Peak indices are denoted.  

 

Supplementary Figure 8. The optical bandgap of amorphous (left) and crystalline (right) states for a combinatorial Ge-Sb-Te 

spread. 

 

Supplementary Figure 9. The performance of the photonic device fabricated by the new nanocomposite PCM, GST467. The 

symmetric multi-level switching is realized. The inset is the top view of the photonic device used for multi-level switching, 

endurance test and comparison between Ge4Sb6Te7 and Ge2Sb2Te5. 
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Supplementary Figure 10. Comparison of CAMEO (blue), GP-UCB (magenta), and random (red) for materials optimization. 

Each curve shows the percentage of the 100 (post data collection) simulation runs for each active learning scheme which have 

reached within 1 % of the optimal Δ𝐸g. Within the first 20 iterations, 31 % of CAMEO’s runs have reached within 1 % of the 

optimal Δ𝐸g, compared to 10 % for GP-UBC. 

 
Supplementary Figure 11. Live visualizations for the Fe-Ga-Pd system. a) Samples labeled with the same color are identified to 

belong to the same phase region. The size of the filled circles indicates probability of estimated region label. Regions of small 

circles indicate high likelihood of phase region boundary. Black circles indicate samples that have been measured for x-ray 

diffraction and target functional property. Red diamond indicates CAMEO’s selection of the next sample to measure. b) Color 

indicates CAMEO prediction of functional property, with each phase region fitted with its own Gaussian process. Here the 

measured voltage is the signal from scanning SQUID and is proportional to magnetization. c) Color indicates computed GP-UCB 

acquisition function for (c) d) FMI phase mapping convergence calculated between each subsequent iteration. e) Convergence in 

maximum functional property value identified computed as the difference in the max identified property in consecutive iterations. 
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